New Diterpenoids from Viburnum awabuki

Ali A. H. El-Gamal,^{†,‡} Shang-Kwei Wang,[§] and Chang-Yih Duh^{*,†}

Department of Marine Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China, and Department of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China

Received October 7, 2003

Eight new vibsane-type diterpenoids, vibsanins P-W (**1**-**8**), were isolated from the methanol extracts of the leaves and twigs of *Viburnum awabuki*. The structures were elucidated by 1D and 2D NMR spectral analysis, and their cytotoxicity against selected cancer cells was measured in vitro.

The plants of genus *Viburnum* are rich in diterpenoids.^{1–12} As part of our search for bioactive substances from marine and terrestrial organisms, the leaves and twigs of *Viburnum awabuki* K. Koch (Caprifoliaceae) were studied because MeOH extracts showed significant cytotoxicity to A549 (human lung adenocarcinoma), HT-29 (human colon adenocarcinoma), and P-388 (mouse lymphocytic leukemia) cell cultures as determined by standard procedures.^{13,14} Bioassay-guided fractionation resulted in the isolation of eight new vibsane-type diterpenoids, vibsanins P–W (1–**8**).

Results and Discussion

The molecular formula of vibsanin P (1) was established as C₂₅H₃₈O₅ from HREIMS, ¹³C NMR, and DEPT spectra. Its IR spectrum indicated the presence of hydroxyl and α,β unsaturated ester groups. The ¹H NMR spectrum (Table 1) exhibited six methyl singlets (δ 1.08, 1.25, 1.26, 1.43, 1.88, 2.12), an oxymethylene [δ 4.01 (d, J = 12.9 Hz), 4.10 (d, J = 12.9 Hz)], two oxymethines [δ 2.76 (dd, J = 12.0, 2.4 Hz), 5.07 (d, J = 9.9 Hz)], and six olefinic protons [5.31 (dd, J = 15.9, 9.9 Hz), 5.55 (dd, J = 9.3, 7.2 Hz), 5.56 (m), 5.65 (d, J = 16.5 Hz), 5.69 (br s), 5.82 (d, J = 15.9 Hz)]. Detailed analysis of the COSY and HSQC spectra of 1 gave six partial structures (Figure 1 in boldface). The double bond in the **b** part should have *E*-geometry due to the coupling constant (J = 15.9 Hz). The partial strcture **a** corresponding to a β , β -dimethylacryl group was additionally supported by observation of the prominent fragment ion peak at m/z 83 in the MS.

These substructures were connected through HMBC correlations between proton H-8 (δ_H 5.07) and carbons C-1' (δ_C 165.7) and C-7 (δ_C 61.2), between protons H₃-19 (δ_H 1.43) and carbons C-7 (δ_C 61.2) and C-6 (δ_C 63.1), between proton H-6 (δ_H 2.76) and carbons C-5 (δ_C 26.3) and C-7 (δ_C 61.2), between methyl protons H₃-20 (δ_H 1.08) and carbons C-1 (δ_C 41.7), C-10 (δ_C 146.5), C-11 (δ_C 40.1), and C-12 (δ_C 41.4), between the protons H₃-16/17 (δ_H 1.26, 1.25) and carbons C-15 (δ_C 70.4) and C-14 (δ_C 144.4), between H₂-18 (δ_H 4.01, 4.10) and carbons C-2 (δ_C 120.5) and C-4 (δ_C 23.8), and between H-1 (δ_H 1.95) and carbons C-3 (δ_C 142.0) and C-12 (δ_C 41.4). Thus, the above spectral data indicated the planar structure **1** as shown in Figure 1.

The relative stereochemistry of **1** was deduced from a 2D NOESY experiment (Figure 2), which indicated that Me-19, Me-20, H-6, and H-9 were on the β -face of the

11-membered ring, while H-8, H-10, and the epoxy ring at C-6/C-7 were on the α -face of the 11-membered ring.

10.1021/np030447w CCC: \$27.50 © 2004 American Chemical Society and American Society of Pharmacognosy Published on Web 01/17/2004

^{*} To whom correspondence should be addressed. Tel: 886-7-525-2000, ext. 5036. Fax: 886-7-525-5020. E-mail: yihduh@mail.nsysu.edu.tw.

[†] National Sun Yat-sen University.

[‡] On leave from Faculty of Pharmacy, Mansoura University, Egypt. [§] Kaohsiung Medical University.

Н	1 ^a	2 ^a	3 ^b	4 ^a	5 ^{<i>a</i>}	6 ^b	7 ^b	8 ^a
1	1.95 m	2.02 m	1.97 m	1.98 m	2.35 m	1.93 m	2.35 m	1.90 m
	2.15 m	2.16 m	2.14 m	2.18 m	2.41 m	2.09 m	2.52 m	2.35 m
2	5.55 dd (9.3, 7.2)	5.44 dd (9.3, 7.2)	5.56 m	5.55 dd (9.3, 7.2)	6.59 t (8.4)	6.04 dd (13.0, 4.0)	6.59 m	6.57 dd (8.7, 5.4)
4	2.12 m	2.11 m	2.13 m	2.11 m	1.90 m	2.12 m	2.42 m	
	2.25 m	2.26 m	2.26 m	2.22 m	2.59 m	2.25 m		
5	1.17 m	1.16 m	1.26 m	1.16 m	1.89 m	6.08 d (16.2)	2.21 m	3.02 m
	2.36 m	2.38 m	1.90 m	2.35 m	2.60 m			
6	2.76 dd (12.0,	2.78 dd (11.4,	2.78 dd (11.5,	2.78 dd (11.7,	2.78 dd (11.7,	6.57 d (16.2)	2.73 d (10.0)	2.68 dd (12.3,
	2.4)	2.4)	2.0)	2.4)	2.4)			2.1) 2.96 dd (12.3, 2.1)
8	5.07 d (9.9)	5.17 d (9.9)	5.17 d (10.0)	5.14 d (9.9)	5.00 d (9.9)	5.34 d (9.0)	2.07 m	6.96 d (12.3)
9	5.31 dd (15.9,	5.40 dd (15.9,	5.40 dd	5.38 dd (15.9,	5.32 dd (15.3,	5.17 dd (16.0,	5.31 dd (15.9,	5.17 dd (12.3,
	9.9)	9.9)	(16.0, 10.0)	9.9)	9.9)	9.0)	9.9)	11.7)
10	5 82 d (15 9)	5 86 d (15 9)	5 88 d (16 0)	5 86 d (15 9)	5 74 d (15 3)	5 74 d (16 0)	5 82 d (15 9)	2 19 m
12	1 99 m	2 05 m	2 02 m	1 47 m	1 16 m	1 76 m	1 26 m	1 21 m
1~	2 25 m	2.00 m	2.26 m	1.17	2 29 m	1.70 111	1.20 m	1.56 m
13	5 56 m	5 56 m	5 55 m	1 46 m	5 56 m	1 16 m	1.02 m	1.00 m
10	0.00 III	0.00 III	0.00 111	1.40 III	0.00 111	1.10 III	1.11 m 1.57 m	1.20 m
14	5 65 d (16 5)	545 m	6 15 d (16 0)	4 00 m	5 72 d (15 6)	3 39 d (9 0)	$4.05 \pm (5.5)$	3 22 d (9 0)
16	1 25 s	1 22 s	4 87 s	4 80 s	1 27 s	1 15 s	4.05 t (0.0)	1 14 s
10	1.20 5	1.22 5	1.07 5	4 92 s	1.275	1.10 5	4.96 s	1.115
17	126 s	1225	1.80 s	1 70 s	1 28 s	1 20 s	173 s	1175
18	4 01 d (12 9)	4 03 d (12 9)	4 04 d (12 5)	4 01 d (12 6)	9.42 s	4 21 d (12 5)	941 s	4 16 d (12 9)
10	4 10 d (12.0)	4.00 d (12.0)	4 11 d (12.5)	4 07 d (12 6)	0.12 5	4 42 d (12.5)	0.11 5	4 29 d (12.0)
19	1.10 a (12.0)	1.12 a (12.0)	1 44 s	1 44 s	141s	1.42 a (12.0)	138 s	213 s
20	1.10 S	1.105	1.115	1.09 s	1 19 s	1.105	1.00 5	0.89 s
2'	5.69 br s	5.70 br s	5.71 br s	5.71 br s	5.68 br s	5 79 br s	1.10 5	5.67 br s
~ 4'	2.12 s	215 \$	2.18 s	2138	2125	2.19 s		2.18 s
5'	1 88 s	1 90 s	1 90 s	1 89 s	1 89 s	194 s		193 s
о́Ме	1.00 5	3.09 s	1.00 5	1.00 5	1.00 5	1.015		1.00 5

^a Recorded in CDCl₃ at 300 MHz. ^b Recorded in CDCl₃ at 500 MHz.

Figure 1. COSY and HMBC correlations of 1.

Figure 2. NOESY correlations of 1–4.

NOESY correlation between H-2 and H_2 -18 indicated the double bond in the substructure **d** had Z-geometry. From the aforementioned data, vibsanin P was formulated as **1**.

The molecular formula of vibsanin Q (**2**) proved to be $C_{26}H_{40}O_5$ from HREIMS, ¹³C NMR, and DEPT spectra. Its IR spectrum showed the presence of hydroxyl and α,β -unsaturated ester groups. The ¹H and ¹³C NMR spectral data (Tables 1 and 2) resembled those of **1** except that the tertiary hydroxyl at C-15 was replaced by a methoxyl group (δ_H 3.09). HMBC correlations from OCH₃ (δ_C 75.0) to C-15

Table 2.	¹³ C NMR	Spectral	Data (δ)) of 1 -	- 8 in (CDCl ₃
		DDUUUU	Dutu 10			

	1 ^a	2 ^a	3 ^b	4 ^a	5 ^a	6 ^b	7 ^b	8 ^a
1	41.7	41.1	40.7	42.3	42.4	45.0	43.4	36.3
2	120.5	120.5	120.6	120.8	149.6	129.3	147.1	138.9
3	142.0	142.0	142.1	141.8	146.0	142.8	141.7	142.2
4	23.8	23.3	23.2	23.2	25.9	202.2	26.5	205.6
5	26.3	26.4	27.4	26.4	25.9	128.8	26.5	48.3
6	63.1	63.1	63.0	63.1	62.6	154.3	62.9	44.1
7	61.2	61.3	61.2	61.3	61.1	74.1	60.8	208.1
8	78.5	77.7	77.8	78.1	78.4	81.9	39.1	137.4
9	122.9	121.4	121.2	121.1	122.1	123.3	122.7	112.9
10	146.5	146.2	146.2	147.9	145.0	145.8	141.9	46.1
11	40.1	40.0	40.2	39.5	41.1	40.5	40.5	40.1
12	41.4	41.9	42.1	30.1	42.4	35.6	30.0	37.2
13	120.9	126.3	126.6	35.0	122.1	26.3	29.7	26.2
14	144.4	138.2	135.5	75.5	142.2	78.6	76.2	79.1
15	70.4	75.0	141.9	147.2	70.4	73.3	147.4	73.1
16	29.2	25.8	114.7	110.5	29.2	23.1	111.3	24.3
17	29.8	26.1	18.7	18.0	29.9	26.3	17.7	24.3
18	66.0	66.1	66.0	66.2	195.0	65.0	195.2	63.6
19	17.8	17.7	17.7	17.7	17.7	18.4	23.2	31.0
20	23.3	23.6	23.5	23.2	22.9	22.8	23.6	23.8
1′	165.7	165.2	165.2	165.5	165.6	168.7		163.1
2′	116.1	116.0	116.0	116.1	116.0	115.3		114.6
3′	157.3	157.2	154.3	157.2	157.5	159.5		160.6
4′	20.4	20.2	20.2	20.3	20.4	20.5		20.6
5′	27.5	27.4	26.3	27.5	27.5	27.6		27.7
OMe		50.3						

^{*a*} Recorded in CDCl₃ at 75 MHz (assigned by DEPT, COSY, HSQC, and HMBC experiments). ^{*b*} Recorded in CDCl₃ at 125 MHz (assigned by DEPT, COSY, HSQC, and HMBC experiments).

clearly positioned the methoxyl group at C-15. The assigned relative stereochemistry of **2** was the same as that of **1**.

The molecular formula of vibsanin R (**3**) was deduced to be $C_{25}H_{36}O_4$ from HRFABMS, ¹³C NMR, and DEPT spectra. Its IR spectrum showed the presence of hydroxyl and α , β unsaturated ester groups. The ¹H and ¹³C NMR spectral

New Diterpenoids from Viburnum awabuki

data (Tables 1 and 2) were similar to those of **1** except that the tertiary hydroxyl at C-15 was dehydrated to form a conjugated diene at C-13 and C-15. The conjugated diene at C-13 and C-15 was confirmed by HMBC correlations from H_2 -16 to C-17 and from H_3 -17 to C-14/C-15. NOESY correlations between H-14 and H-17 established the geometry between C-13 and C-17. The relative stereochemistry of the 11-membered ring of **3** was assigned to be the same as that of **1**.

Vibsanin S (4) had a molecular formula of $C_{25}H_{38}O_5$ as indicated by HREIMS, ¹³C NMR, and DEPT spectra, and the IR spectrum indicated the presence of hydroxyl and α,β -unsaturated ester groups. The ¹H and ¹³C NMR spectral data (Tables 1 and 2) were analogous to those of **1** except that the side chain at C-11 was replaced by that of visbanin G.² The side chain was confirmed by HMBC correlations from H-17 to C-14/C-15/C-16. The relative stereochemistry of the 11-membered ring of **3** was the same as that of **1**.

Vibsanin T (5) had a molecular formula of $C_{25}H_{36}O_5$ as determined by HREIMS, ¹³C NMR, and DEPT spectra, and the IR spectrum showed the presence of hydroxyl and α , β -unsaturated carbonyl groups. The ¹H and ¹³C NMR spectral data (Tables 1 and 2) resembled those of **1** except that the hydroxymethyl at C-3 was replaced by an aldehyde group (δ_H 9.42 s, δ_C 195.0). HMBC correlations from H-18 to C-2 /C-4 clearly positioned the aldehyde group at C-3. The assigned relative stereochemistry of the 11-membered ring of **5** was the same as that of **1**.

Vibsanin U (6) had a molecular formula of $C_{25}H_{38}O_7$ as established by HREIMS, ¹³C NMR, and DEPT spectra. Its IR spectrum showed the presence of hydroxyl and α_{β} unsaturated ester absorption groups. The ¹H NMR spectrum (Table 1) exhibited six methyl singlets (δ 1.03, 1.15, 1.20, 1.40, 1.94, 2.19), an oxymethylene (δ 4.21, 4.42), two oxymethines (δ 3.39, 5.34), and six olefinic protons (δ 5.17, 5.74, 5.79, 6.04, 6.08, 6.57). These data resembled the ¹H NMR data of the 11-membered ring system and the β_{β} dimethyl acryl substituent at C-8 of vibsanin B, isolated previously from V. odoratissimum.^{1,11} The COSY spectrum, which showed correlations between H-6/H-5, H-8/H-9, H-9/ H-10, and H-1/H-2, supported the presence of an 11membered ring in 1 as in vibsanin B. Comparison of the ¹³C NMR data (Table 2) and HMQC of 6 with those of vibsanin B showed that the two compounds are identical except that the double bond at C-14 was replaced by two hydroxyl groups. HMBC correlations from H-16/H-17 to C-15/C-14 confirmed this assignment. The relative stereochemistry of 6 was deduced from a 2D NOESY experiment, which showed cross-peaks (H₃-19/H-5, H₃-19/H-5, H-9/H₃-20, H-8/H-10, H-8/H-6, H-6/H-10) indicating that Me-19, Me-20, H-5, and H-9 were on the β -face of the 11membered ring, while H-8, H-10, and H-6 were on the α -face of the 11-membered ring.

HRFABMS, ¹³C NMR, and DEPT spectra revealed vibsanin V (7) to have a molecular formula of $C_{20}H_{30}O_3$. Its IR spectrum showed the presence of hydroxyl and α,β unsaturated carbonyl groups. The ¹H and ¹³C NMR spectral data (Tables 1 and 2) resembled those of 14-hydroxyvibsanin F⁵ except that the hydroxymethyl at C-3 was replaced by an aldehyde group (δ_H 9.41 s, δ_C 195.2). HMBC correlations (Figure 3) from H-18 to C-2 /C-4 clearly positioned the aldehyde group at C-3. The relative stereochemistry of 7 was deduced from a 2D NOESY experiment, which indicated that Me-19, Me-20, H-6, and H-9 were on the

Figure 3. HMBC correlations of 7.

Figure 4. NOESY correlations of 8.

 β -face of the 11-membered ring, while H-8, H-10, and the epoxy ring at C-8 were on the α -face of the 11-membered ring.

Vibsanin W (8) was shown to have the molecular formula of C₂₅H₃₈O₇ by HRFABMS, ¹³C NMR, and DEPT spectra. Its IR spectrum showed the presence of hydroxyl and α,β unsaturated carbonyl groups. The ¹H and ¹³C NMR data (Tables 1 and 2) of **8** showed the presence of six tertiary methyl groups [$\delta_{\rm H}$ 0.89, 1.14, 1.17, 1.93, 2.13, 2.18], an oxymethylene [$\delta_{\rm H}$ 4.16 (d, J = 12.9 Hz), 4.29 (d, J = 12.9Hz), $\delta_{\rm C}$ 63.6], an oxymethine [$\delta_{\rm H}$ 3.22 (d, J = 9.0 Hz), $\delta_{\rm C}$ 79.1], two trisubstituted olefins [$\delta_{\rm H}$ 5.67, $\delta_{\rm C}$ 114.6, 160.6; $\delta_{\rm H}$ 6.96, $\delta_{\rm C}$ 138.9, 142.2], and a disubstituted olefin [$\delta_{\rm H}$ 5.17 (dd, J = 12.3, 11.7 Hz), 6.96 (d, J = 12.3 Hz), $\delta_{\rm C}$ 112.9, 137.4]. These spectral features indicated that 8 was a typical seven-membered vibsane-type diterpene. The ¹H and ¹³C NMR spectral data were very similar to those of vibsanin $C^{1,2,11}$ except that the double bond at C-14 was replaced by two hydroxyl groups. HMBC correlations from H-16/H-17 to C-15 /C-14 confirmed this assignment. The relative stereochemistry of 8 was deduced from a 2D NOESY experiment (Figure 4), which indicated that Me-20, H-5, and the β , β -dimethylacryl group were on the β -face of the seven-membered ring.

Compounds **1** and **8** exhibited significant cytotoxicity against P-388 cells with ED_{50} values of 2.25 and 2.18 μ g/mL, respectively, and compounds **2**–**7** were moderately cytotoxic ($ED_{50} < 10.0 \mu$ g/mL). For comparison, compounds **1** and **8** were also moderately cytotoxic against A549 cells (ED_{50} 4.62 and 5.60 μ g/mL, respectively) and against HT-29 cells (ED_{50} 9.97 and 8.15 μ g/mL, respectively).

Experimental Section

General Experimental Procedures. Melting points were determined using a Yanagimoto micromelting point apparatus and are reported uncorrected. Optical rotations were determined on a JASCO DIP-181 polarimeter. UV spectra were obtained on a Shimadzu UV-160A spectrophotometer, and IR spectra were recorded on a Hitachi 26-30 spectrophotometer. The NMR spectra were recorded on a Varian Inova 500 or a Bruker Avance 300 spectrometer. The chemical shifts are given in δ (ppm) and coupling constants in Hz. EIMS spectra were obtained with a JEOL JMS-SX/SX 102A mass spectrometer at 70 eV. Si gel 60 (Merck, 230–400 mesh) was used for column

chromatography; precoated Si gel plates (Merck, Kieselgel 60 F₂₅₄, 0.25 mm) were used for TLC analysis.

Plant Material. The leaves and twigs of V. awabuki were collected at Hen-Chung, Pin-tong County, Taiwan, in October 1990. A voucher specimen, HS-032, was deposited in the Department of Marine Resources, National Sun Yat-sen University, Taiwan.

Extraction and Isolation. The dried leaves and twigs (4.40 kg) of V. awabuki were extracted with MeOH (10 L \times 3). After removal of solvent in vacuo, the residue (196 g) was chromatographed over Si gel 60 using CHCl₃ and CHCl₃-MeOH mixtures as eluting solvents. Elution by CHCl₃-MeOH (98:2) afforded fractions containing 1-8. Compounds 1 and 2 were further purified by Si gel column chromatography, by eluting with *n*-hexane-acetone (75:25), and a RP-18 HPLC column by eluting with MeOH-H₂O (40:60). Compounds 3 and 4 were further purified by Si gel column chromatography, by eluting with n-hexane-acetone (70:30), and a RP-18 HPLC column by eluting with MeOH-H₂O (43:57). Compound 5 was further purified by Si gel column chromatography, by eluting with n-hexane-acetone (75:25), and a RP-18 HPLC column by using MeOH–H₂O (42:58). Compounds ${\bf 6}$ and ${\bf 7}$ were further purified by Si gel column chromatography, by eluting with n-hexane-acetone (80:20), and a RP-18 HPLC column by eluting with MeOH-H₂O (45:55). Compound 8 was further purified by Si gel column chromatography, by eluting with n-hexane-acetone (55:45), and a RP-18 HPLC column by using MeOH-H₂O (50:50).

Vibsanin P (1): colorless amorphous solid (6 mg); $[\alpha]^{25}_{D}$ $+24^{\circ}$ (c 0.3, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 237 (3.74) nm; IR (KBr) v_{max} 3420, 1720, 1670 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS *m*/*z* 418 [M]⁺ (8), 400 (2), 384 (2), 319 (28), 135 (23), 109 (30), 83 (100); HREIMS m/z 418.2706 (calcd for C₂₅H₃₈O₅, 418.2709).

Vibsanin Q (2): colorless amorphous solid (5 mg); $[\alpha]^{25}_{D}$ +23° (*c* 0.4, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 238 (3.89) nm; IR (KBr) ν_{max} 3450, 1715, 1668 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS m/z 432 [M]+ (9), 319 (5), 135 (26), 109 (48), 83 (100); HREIMS m/z 432.2869 (calcd for C₂₆H₄₀O₅, 432.2865).

Vibsanin R (3): colorless amorphous solid (1 mg); $[\alpha]^{25}_{D}$ +43° (*c* 0.5, CHCl₃); UV (MeOH) λ_{max}^{1} (log ϵ) 237 (3.78) nm; IR (KBr) ν_{max} 3460, 1718, 1665 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; HRFABMS m/z 423.2512 (calcd for C25H36O4-Na, 423.2502).

Vibsanin S (4): oil (8 mg); $[\alpha]^{25}_{D}$ +25° (c 0.3, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 240 (3.68) nm; IR (KBr) ν_{max} 3460, 1715, 1660 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS m/z 418 [M]+ (8), 400 (1), 384 (2), 109 (58), 83 (100); HREIMS m/z 418.2701 (calcd for C₂₅H₃₈O₅, 418.2709).

Vibsanin T (5): oil (12 mg); $[\alpha]^{25}_{D} + 46^{\circ}$ (*c* 0.4, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 239 (3.78) nm; IR (KBr) ν_{max} 3415, 1720, 1670 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; EIMS m/z 416 [M]+ (5), 401 (1), 217 (20), 109 (15), 83 (100); HREIMS m/z 416.2559 (calcd for C₂₅H₃₆O₅, 416.2553).

Vibsanin U (6): gum (1 mg); $[\alpha]^{25}_{D} + 21^{\circ}$ (*c* 0.6, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 241 (3.90) nm; IR (KBr) ν_{max} 3415, 1715, 1665 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; HRFABMS *m*/*z* 473.2512 (calcd for C₂₅H₃₈O₇Na, 473.2505).

Vibsanin V (7): colorless amorphous solid (2 mg); $[\alpha]^{25}_{D}$ +30° (c 0.5, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 233 (3.66) nm; IR (KBr) v_{max} 3445, 1720 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; HRFABMS m/z 341.2094 (calcd for C₂₀H₃₀O₃ Na, 341.2085).

Vibsanin W (8): colorless amorphous solid (4 mg); $[\alpha]^{25}_{D}$ +16° (c 0.3, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 244 (3.96) nm; IR (KBr) *v*_{max} 3500, 1745, 1722, 1672 cm⁻¹; ¹H NMR, see Table 1; ¹³C NMR, see Table 2; HREIMS *m*/*z* 473.2512 (calcd for C₂₅H₃₈O₇ Na, 473.2505).

Cytotoxicity Testing. P-388 cells were kindly supplied by J. M. Pezzuto, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University; A549 and HT-29 were purchased from the American Type Culture Collection. Cytotoxic assays were carried out according to the procedure described previously.14

Acknowledgment. We thank F.-C. Ho, Department of Forest (Taiwan), for the collection and identification of the plant materials and J. M. Pezzuto, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, for the provision of P-388 cell lines. This work was supported by grants from the National Science Council of Taiwan awarded to C.-Y.D.

References and Notes

- (1) Fukuyama, Y.; Minami, H.; Takaoka, S.; Kodama, M.; Kawazu, K.; Nemoto, H. Tetrahedron Lett. 1997, 38, 1435-1438.
- (2) Minami, H.; Anzaki, S.; Kubo, M.; Kodama, M.; Kawazu, K.; Fukuyama, Y. Chem. Pharm. Bull. **1998**, *46*, 1194–1198. (3) Fukuyama, Y.; Minami, H.; Kagawa, M.; Kodama, M.; Kawazu, K.
- J. Nat. Prod. 1999, 337-339.
- (4) Kubo, M.; Chen, I.-S.; Minami, H.; Fukuyama, Y. Chem. Pharm. Bull. 1999, 47, 295-296.
- (5) Kubo, M.; Chen, I.-S.; Fukuyama, Y. Chem. Pharm. Bull. 2001, 49, 242 - 245
- (6) Fukuyama, Y.; Minami, H.; Matsuo, A.; Kitamura, K.; Akizuki, M.; Kubo, M.; Kodama, M. *Chem. Pharm. Bull.* **2002**, *50*, 368–371.
 (7) Fukuyama, Y.; Minami, H.; Fujii, H.; Tajima, M. *Phytochemistry* **2002**,
- 60, 765-768.
- (8) Fukuyama, Y.; Kubo, M.; Fujii, T.; Matsuo, A.; Minoshima, Y.; Minami, H.; Morisaki, M. *Tetrahedron* 2002, 58, 10033–10042. (9) Fukuyama, Y.; Minami, H.; Takeuchi, K.; Kodama, M.; Kawazu, K.
- Tetrahedron Lett. 1996, 37, 6767-6770. (10) Kubo, M.; Chen, I.-S.; Minami, H.; Fukuyama, Y. Chem. Pharm. Bull.
- 1999, 47, 295-296.
- (11) Kawazu, K. Agric. Biol. Chem. 1980, 44, 1367-1372.
- (12) Fukuyama, K.; Katsube, Y.; Kawazu, K. J. Chem. Soc., Perkin Trans. 2 1980, 1701-1703.
- (13)Geran, R I.; Greenberg, N. H.; MacDonald, M. M.; Schumacher, A. M.; Abbott, B. J. *Cancer Chemother. Rep.* **1972**, *3*, 1–91. (14) Hou, R.-S.; Duh, C.-Y.; Chiang, M. Y.; Lin, C.-N. J. Nat. Prod. **1995**,
- *58*, 1126–1130.

NP030447W